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Abstract

Fission gas evolution and release in UO2 nuclear fuel are important fuel performance
metrics and occur in several distinct stages: 1) nucleation, growth and resolution of
intra-granular bubbles, 2) diffusion to grain boundaries and 3) nucleation and growth of
bubbles at grain boundaries, which eventually form a connected network (percolation)
enabling release of gas from grain boundaries through connections to triple junctions,
grain edges or free surfaces. The NE-SciDAC project is developing several computa-
tional tools to model this problem, which are connected in a hierarchical multi-scale
framework. The information transfer in the multi-scale framework is a critical step
that, in addition to best-estimates, should include uncertainty quantification. Despite
taking a first-principles multi-scale approach, there is a need to perform parameter cal-
ibration to ensure consistency with available experimental data. In the present study,
uncertainty quantification (UQ) and parameter calibration is demonstrated for one of
the lower length scale codes in the multi-scale framework (Centipede) and then the
results, including instances of the propagated uncertainties, are used in other codes
within the framework, specifically Nyx and Xolotl-MARMOT.

We calibrated the model parameters in Centipede, a computer code used to predict
diffusivities of uranium (U) and xenon (Xe) in the context of the simulation of fission gas
in uranium oxide (UO2) nuclear fuel. The Centipede code depends on 183 parameters,
all of which are subject to uncertainty. The three data sets used in our calibration effort
are taken from the literature, in particular references [1, 2, 3, 4]. This data is available
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as a set of measurements, including measurement errors. Our goal is to calibrate a
statistical model that predicts both the value of the measurement and the uncertainty
associated with the measurement. We perform a Bayesian calibration of the model
parameters using a dedicated approximate Bayesian computation (ABC) likelihood
function. To avoid excessive computational costs, we replace the expensive Centipede
simulation code by a higher-order surrogate model, constructed using only the 9 most
important parameters. These important parameters are identified by a preliminary
global sensitivity analysis (GSA) study. Among the important parameters are T0 (the
temperature at which UO2 is perfectly stoichiometric) and Hf_pO2 (the temperature
dependence of the oxygen (O) partial pressure) that should be considered as operating
conditions to be estimated along with the other parameters. We consider two different
cases: one where we define one set of these operating conditions for all data sets, and
one where we define distinct operating condition parameters for each data set. The
Xe diffusivities predicted by the latter case show distinct features that could not be
observed in the former.

Next, we use the diffusivity predictions by Centipede as input to Nyx, a reduced-
order fuel performance code focused on gas behavior alone, in order to estimate quan-
tities associated with inter-granular bubble formation at conditions specified by the
experiments of [5]. Finally, the diffusivities obtained from the calibrated Centipede
runs were used in coupled Xolotl-MARMOT simulations of intra- and inter-granular gas
evolution. The results are compared to simulations using the baseline diffusivities from
Turnbull et al. from [3].
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1 Introduction, background and objectives

Fission gas evolution in UO2 nuclear fuel progresses in several stages, as described in the
literature based on experimental knowledge accumulated over several decades [6, 7, 8, 9,
10, 11, 12, 13]. Below, these stages are briefly summarized. Work performed under the
current NE-SciDAC project to improve our understanding of the staged evolution of fission
gas and to develop new capabilities to simulate the behavior is highlighted, with emphasis
on providing background for uncertainty quantification (UQ), parameter calibration and a
proof-of-principle uncertainty propagation exercise in the hierarchical multi-scale modeling
and simulation framework used to describe fission gas evolution and release.

1.1 Fission gas evolution and release in UO2

Xenon (Xe) atoms, which constitute the highest concentration among fission gases and are
used as a representative case, are formed in fission events and initially come to rest in trap
sites in the UO2 lattice, of which the most stable is a cluster of uranium (U) and oxygen (O)
vacancies [14, 15, 16, 17]. Due to their low solubility in the UO2 lattice, there is a significant
driving force for Xe atoms to escape by either nucleating and growing bubbles inside grains
(intra-granular bubbles), on grain boundaries (inter-granular bubbles) or by escaping the
fuel pellet entirely through release to the plenum. Nucleation and growth of intra-granular
bubbles represent the first step in fission gas evolution and release. It is controlled by
diffusion of individual gas atoms through the lattice, as described by the Xe diffusion co-
efficient. This diffusion coefficient is labeled the unperturbed Xe diffusivity as it excludes
interactions with bubbles and other Xe sinks. However, the unperturbed diffusivity is influ-
enced by interactions with point defects and, by extension, how the concentration of points
defects is perturbed by irradiation. The diffusivity may also be impacted by impurities or
other fission products, but accounting for those is considered future work. The preferred
Xe trap site and active diffusion mechanism under thermal equilibrium and irradiation con-
ditions were studied during the first few years of the NE-SciDAC project based on atomic
scale simulations [14] and cluster dynamics simulations using the Centipede code [18, 15].
The resulting diffusion rates or diffusivities depend on complex interactions between point
defects and Xe atoms, which result in a mechanistic diffusion model with many input pa-
rameters (183) that, in many cases, have substantial uncertainty. The present study will
analyze those uncertainties and demonstrate how limited experimental data points on U
and Xe diffusion may be used to refine mechanistic diffusion model parameters and improve
the accuracy of model predictions.

The growth of intra-granular fission gas bubbles due to diffusion is counteracted by bubbles
shrinking or being destroyed by fission fragments traveling through the lattice. In UO2,
most of the fission energy is dissipated by electronic stopping, which leads to a thermal
spike in a localized region surrounding the fission fragment [19]. If a bubble is located in
the sphere of influence of a thermal spike, it is either completely destroyed or a certain
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fraction of gas atoms is knocked out of the fission gas bubble. Ballistic interaction between
the fission gas fragment and the bubble has a similar effect, but is less prevalent than
thermal spikes in UO2. Based on large-scale molecular dynamics simulations, Ref. [19],
which was generated under the NE-SciDAC pilot project, discusses the resolution processes
in detail and develops a model of the resolution rate that is suitable for application in
rate-theory models of gas evolution, such as those used in fuel performance codes and the
Xolotl cluster dynamics code [20, 21, 22, 23, 24].

The balance between growth of bubbles due to diffusion and shrinkage or destruction due
to fission fragments prevents the intra-granular bubbles from growing beyond a certain size
and results in a steady-state distribution of nano-scale intra-granular bubbles. At high
burnups, a bimodal distribution of intra-granular gas bubbles may still evolve, which is
believed to be a consequence of more complex mechanisms than those described above,
possibly related to pipe-diffusion along dislocations or sized-dependent growth/resolution
rates [25]. The formation of a bimodal bubble distribution is researched separately under
the NE-SciDAC project using both meso-scale Xolotl cluster dynamics simulations and
engineering scale analysis [26].

Gas atoms may also diffuse through the lattice to grain boundaries, where fission gas bubbles
grow much larger than within the grains due to more efficient capture mechanisms following
interaction with fission fragments, which effectively turns off bubble resolution at grain
boundaries. The rate at which gas atoms arrive at grain boundaries is controlled by the
diffusion of Xe atoms through the lattice as well as the capture and resolution rate of Xe
atoms by intra-granular bubbles. The net rate of arrival at grain boundaries is determined
by an effective Xe diffusion coefficient, which is formulated in terms of the unperturbed
bulk Xe diffusivity, the capture rate, which depends on the bulk diffusivity, and the bubble
resolution rate. This is a simplified model suitable for engineering scale simulations of
certain fuel conditions. However, it may not be valid for all conditions, in particular not for
fuel exposed to high burnups or transients. In the NE-SciDAC project, these conditions are
explored using spatially-resolved cluster dynamics simulations performed with the Xolotl
code [20, 21, 22, 23, 24]. Segregation of gas to grain boundaries is considered the second
step in the gas evolution and release process. Because grain boundary bubbles are not
resolved by fission fragments, they will continue to grow as more gas arrive.

The third step in the gas evolution process is growth and interconnection of gas bubbles
at grain boundaries. The bubbles eventually reach a percolation threshold that allows all
gas at a boundary to connect with triple junctions, grain edges or free surfaces. The grain
edges are typically assumed to be covered by gas bubbles earlier than grain face percolation
occurs and to be connected with a free pellet surface, which allows the gas to be released to
the plenum. Before reaching the percolation threshold at grain boundary faces and edges,
these large bubbles contribute to gaseous swelling. In the NE-SciDAC project the evolution
of gas bubbles on grain boundaries and grain edges is simulated with the MARMOT phase-field
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code [27]. A key goal of the NE-SciDAC project is to couple the Xolotl and MARMOT codes,
thus enabling representation of both intra- and inter-granular bubble evolution as well as
diffusion and release of gas to the plenum.

1.2 Report objectives and structure

As described above, the NE-SciDAC project targets simulations of all steps in the fission
gas evolution and release process. The ultimate objective is to develop an engineering scale
model that accurately captures fission gas evolution and release at the pin scale for a range
of operating conditions, which can only be accomplished by relying on mechanistic models
at each length and time scale. At the outset of the NE-SciDAC project the necessary
parts of such a methodology were identified, see Fig. 1 and discussion above. Uncertainty
quantification has a critical role to play in connecting the scales through propagation of
uncertainties and investigation of parameter sensitivities. Another important component of
uncertainty quantification is the ability to calibrate parameters in the mechanistic models
of gas evolution based on experimental data available on macro-scale properties, such as
diffusion coefficients and thermodynamic equilibrium data. These allow incorporation of
knowledge acquired in historical gas release and thermodynamic experiments into advanced
models, while still maintaining the benefits of mechanistic models derived from more recent
atomic and meso-scale scale simulations. The purpose of the present report is to provide a
first demonstration of applying systematic uncertainty quantification to analyze mechanistic
models relying on atomic scale data, refine or calibrate such models based on experimental
data and propagate uncertainties in the hierarchical multi-scale framework set up to model
fission gas evolution and release in the NE-SciDAC project.

The report is structured as follows. First, the atomic scale simulations performed to elu-
cidate Xe diffusion mechanisms in irradiated UO2 will be briefly summarized, which is
followed by a summary of how this information is incorporated into the Centipede clus-
ter dynamics code to calculate the irradiation response of point defects in UO2 and how
those determine the unperturbed Xe diffusivity in UO2 nuclear fuel. Instead of applying
the Centipede results in a full-fledged fuel performance code such as Bison, in the present
study this step of the analysis will be performed based on a stand-alone code called Nyx.
A brief summary of the Nyx code is also provided. The simulations performed in Nyx may
easily be transferred to Bison once the development phase is complete. The calculated Xe
diffusivity may also be used in the Xolotl and MARMOT codes as well as in coupled Xolotl-
MARMOT simulations. The relevant methodology is highlighted. Following the review of the
multi-scale methods to model gas evolution, the methodology and results from uncertainty
quantification of the atomic scale parameters used by the Centipede code to calculate the
unperturbed Xe diffusivity are summarized. In the next step, the atomic scale parame-
ters used by Centipede are calibrated based on experimental measurements of U and Xe
diffusivities available in the literature. The calibrated unperturbed Xe diffusivity is then
used in the Nyx code to predict gas evolution at the fuel pin scale. These simulations also
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Figure 1: Multiscale framework used in the NE-SciDAC project to simulate fission gas evo-
lution and release in UO2. Uncertainty quantification has an important role in connecting
atomic scale data with meso- and engineering scale simulation methods.

use the uncertainties propagated from the calibrated Centipede simulations. In addition,
the unperturbed Xe diffusivities predicted by Centipede using the calibrated parameter set
are used in Xolotl-MARMOT simulations to demonstrate the impact on fission gas evolution
at the grain scale. The combined Centipede, Nyx and Xolotl-MARMOT exercises serve as a
demonstration of incorporating uncertainties, performing calibration and validation against
available experimental data in the hierarchical multi-scale simulation approach used in the
NE-SciDAC project. Finally, our conclusions are presented.

2 Simulation methods for fission gas diffusion, evolution and
release in UO2

2.1 Diffusivities under thermal equilibrium conditions: Analytical mod-
els based on density functional theory and empirical potentials cal-
culations

The first step in developing a mechanistic fission gas evolution and release model is to
identify the active Xe diffusion mechanism under both thermal equilibrium and irradiation
conditions. Ref. [14] calculated the thermodynamic (defect formation energies/entropies,
binding energies/entropies) and kinetic properties (migration barriers, attempt frequencies)
of Xe defect clusters involving up to ten U vacancies and sixteen O vacancies as well as for
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interstitial defects that may contribute to diffusion. The calculations were performed based
on density functional theory (DFT) for energies and semi-empirical potentials for entropies.
In thermal equilibrium, the resulting Xe diffusivity may be calculated by weighting the
diffusivity of each cluster by its relative concentration, as determined from an analytical
point defect model. Ref. [14] shows that the resulting diffusivity agrees reasonably well
with the experimental data due to Davies and Long [2], which is considered to be the
most accurate data for application in fuel performance codes at high temperature, where
irradiation effects are assumed to be negligible. The active diffusion mechanism refers to
a Xe atom occupying a cluster consisting of two U vacancies and one O vacancy, which
implies that diffusion occurs by a vacancy mechanism. The predicted diffusivity depends
on the O non-stoichiometry of the fuel, which is governed by the prescribed O chemical
potential. The latter may vary depending on the experimental setup, which has led to large
variations in experimental data. In the calibration exercise presented in Sec. 3, an example
will be provided of how the O chemical potential or partial pressure can be calculated for
each experiment according to a self-consistent methodology.

2.2 Diffusivities under irradiation conditions: Centipede cluster dynam-
ics simulations with input from density functional theory and em-
pirical potentials calculations

The analytical point defect model applied for the thermal equilibrium case in Ref. [14]
cannot be used under irradiation. Rather, the creation of point defects due to irradia-
tion damage, their self-interaction and interaction with sinks must be modeled to capture
the non-equilibrium response due to irradiation. This is accomplished by the Centipede
cluster dynamics code originally developed under NEAMS and then continued to be de-
veloped under the NE-SciDAC project [18, 15]. The Centipede code and the underlying
methodology was recently presented in Ref. [18] and applied to Xe diffusion in irradiated
UO2in Ref. [15], as well as for related problems [28]. In short, Centipede solves a set of
reaction equations that captures the creation of defects due to irradiation damage and their
reactions with each other and lattice sinks. Each reaction is formulated in terms of the
change in free energy, which governs the direction of the reaction and provides a natural
way to account for O non-stoichiometry and other thermodynamic considerations. The
reaction rate is influenced by the driving force, but even more so by the kinetic properties
of the reacting defects. Centipede solves for the steady-state solution to the coupled set
of reaction equations, which provides the concentration of point defects, clusters involving
multiple point defects and clusters involving Xe atoms. Without the presence of irradia-
tion, the solution to these equations reduces to that of the thermal equilibrium case. From
the information on defect concentrations, diffusivities may be calculated by considering the
concentration and mobility of each individual cluster. Centipede is implemented in the
MOOSE framework [29].
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The Centipede code focuses on accurately capturing the chemistry and irradiation response
of point defects and relatively small defect clusters with up to about 10 U and 20 O va-
cancies interacting with a single Xe atom. This distinguishes it from the Xolotl cluster
dynamics code used to simulate clusters of Xe atoms containing up to millions of atoms (gas
bubbles). Unlike Centipede, Xolotl presently only accounts for Xe and does not explicitly
track vacancies or interstitials in applications to UO2. The small clusters targeted in the
Centipede code are important for diffusion, while any cluster larger than roughly 10 U
vacancies or containing more than one Xe atom acts as a small bubble rather than as a
mobile cluster and consequently does not contribute much to diffusion. Instead it acts as a
sink. Xolotl is currently being coupled to Centipede in order to resolve the full Xe-vacancy
phase space in a single simulation.

Refs. [15] and [28] present the baseline results for U and Xe diffusion, respectively, which
constitute the starting point for the sensitivity and uncertainty quantification exercises
summarized in Sec. 3. The key results from the baseline cases are reproduced in Fig. 2.
Although the prediction of U and Xe diffusivities are in fairly good agreement with avail-
able experimental data, the most accurate predictions required some by hand parameter
calibration due to inherent uncertainties deriving from the underlying DFT and empirical
potential calculations. Parameter uncertainty combined with model uncertainty results in
predictions with a certain error bar, however the results in Fig. 2 give no indication of
the magnitude of this error. This deficiency is addressed in the present study by estimat-
ing uncertainties for individual model parameters and performing a formal sensitivity and
uncertainty quantification (UQ) analyses. The main new result of the present study is a
demonstration of how the accuracy of model predictions can be improved by performing
parameter calibration based on the experimental data reproduced in Fig. 2, while observing
uncertainty ranges for the model parameters obtained from DFT and empirical potential
calculations as well as uncertainties associated with the experimental data.

2.3 Intra-granular diffusion, bubble nucleation and growth simulated by
the Xolotl code

The intra-granular fission gas behavior is modeled by the Xolotl cluster dynamics code,
originally developed to simulate irradiated material in fusion reactors [20, 21, 22, 23, 24].
The current implementation assumes that all fission gas atoms are Xe. Moreover, UO2

vacancies are not modeled and only Xe atoms and Xe clusters/bubbles are resolved. Va-
cancies and interstitials will be added in future work. Xolotl evolves the concentrations of
clusters containing increasing numbers of Xe atoms. The evolution of each cluster size is
determined by solving a PDE generally described as:

∂Cn

∂t
= Ḟ yn +Dn∆2Cn −Q(Cn), (1)
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b)a)

Figure 2: Baseline Centipede predictions of U (a) and Xe diffusivities (b) in UO2 compared
to a subset of available experimental data [2, 1, 4], as reproduced from Refs. [18] and [15].
a) The solid red line refers to the total diffusivity under irradiation and the dashed blue line
diffusion in thermal equilibrium. The circles refer to the most reliable experimental data.
The solid black lines refer to experiments by Matzke. They deviate significantly from the
predictions, which is presumed to be a consequence of sample oxidation. The other lines
refer to contributions from individual diffusion mechanisms. (b) Xe diffusion coefficient as
function of temperature in irradiated UO2 predicted by the Centipede code are shown in
black lines (long-dash line refers to the irradiation case and short-dash line to the thermal
equilibrium case). The other lines represent the diffusivity due to the two main contributing
clusters. Experimental data is shown as colored bands indicating the spread of data. The
three different colors highlight the high (D1), intermediate (D2) and low (D3) temperature
diffusion regimes. In both figures, the legend defines the defect species contributing to
diffusion using Kröger-Vink notation, see the original references for additional details.
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where Cn is the concentration of a cluster containing n Xe atoms, the first right-hand-side
term corresponds to the production of new Xe, the second term is the diffusion term, and
the third term accounts for reactions between clusters. The Xe production is a function of
the fission rate density Ḟ and the fission yield yn of n Xe atoms per fission; fissions only
yield single Xe atoms, such that yn>1 = 0. Dn is the diffusion coefficient of each Xe cluster,
though only the smallest cluster is assumed to be mobile. The diffusivity of the mobile
single Xe atom corresponds to the diffusivity calculated by Centipede. The last term in
Eq. 3 represents the cluster reactions, which includes capture, emission and resolution of
Xe atoms according to rates governed by either diffusion of single Xe atoms or resolution
by fission fragments. The PDEs resulting from the cluster dynamics formulation are solved
using the finite difference method (FDM) and implicit time integration with PETSc [23].
Further details of the Xolotl model and parameter values used in the simulations can be
found in Ref. [30].

2.4 Inter-granular bubble evolution simulated by the MARMOT phase-field
code

The phase-field method is a popular approach to model spatially-resolved microstructure
evolution. Each phase or micro-structure feature is described by continuous variable fields
that smoothly transition between values at interfaces, in our case grain boundaries or bubble
surfaces, giving the interfaces a finite width. In addition to the non-conserved phase-field
variables, conserved quantities such as concentration fields, are also tracked. Here, those
correspond to the concentration of Xe and vacancies. The concentration variables are
sometimes coupled to the phase-field variables, which is the case for the bubble phase
in UO2. The phase-field and concentration variables are evolved with time to minimize
the free energy. In this work, the model from Aagesen et al. [31] that was developed to
investigate the evolution of inter-granular gas bubbles in polycrystalline UO2 was used.
In this formulation the concentration fields are replaced with the chemical potential for
improved numerical efficiency. Ref. [30] contains further details of the application of this
methodology, including parameter values used in the simulations.

The system of partial differential equations obtained in the phase-field formulation are
solved using the finite element method (FEM) with implicit time integration in the MARMOT
mesoscale fuel performance code [27]. MARMOT is based on the Multiphysics Object-Oriented
Simulation Environment (MOOSE) [29]], which uses the PETSc library [32] for solving the
system of nonlinear equations. The computational cost of polycrystalline simulations is
reduced by using the grain tracker system available in MOOSE [33].

2.5 Coupled Xolotl-MARMOT simulations of gas evolution and release

The intra-granular bubbles in UO2 are only a few nanometers in diameter, which is very
small compared to the size of grains and grain boundary bubbles. This makes it numerically
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difficult to resolve all the disparate micro-structure features in irradiated UO2 fuel using
the phase-field method. Conversely, the cluster dynamics approach employed in Xolotl is
challenging for very large bubbles due to the need to track a large set of cluster sizes and,
moreover, this method does not explicitly represent the complex shape that bubbles at grain
boundaries may take, which is desired for resolving the bubble evolution at grain boundaries
and edges. For these reasons, a combined cluster dynamics and phase-field approach is
pursued in the NE-SciDAC project. The Xolotl cluster dynamics code is used to describe
the intra-granular bubbles and diffusion to grain boundaries and grain edges, while the
MARMOT phase-field method is utilized for evolving grain boundary and edge bubbles as well
as the grain micro-structure itself. The two codes are coupled by Xolotl providing the
flux to grain boundaries as a source term in MARMOT, which then evolves grain boundaries
and bubbles at grain boundaries. The grain micro-structure is returned to Xolotl by
MARMOT. Details of the coupling strategy, including numerical performance, and simulation
parameters for both MARMOT and Xolotl are available in Ref. [30]. Information transfer
between the two codes is handled by the MultiApp and Transfer systems from the MOOSE
framework [34].

2.6 Application of calculated diffusivities in reduced order fuel perfor-
mance models (Nyx)

The models developed in the NE-SciDAC project targets implementation in the Bison fuel
performance code. However, during the model development and testing phases, a stand-
alone code called Nyx, developed by G. Pastore at UTK, is utilized. This code is focused
on fission gas behavior only and does not attempt to solve the larger thermo-mechanical
problem that is at the core of the capabilities in Bison.

More in detail, Nyx is an object-oriented C++ computer program designed to perform
zero-dimensional (0D) “point” calculations. In other words, Nyx can be used to model
fission gas behavior in a single location (comparable to a mesh point for an engineering fuel
performance code), provided the local conditions as a function of the time (e.g., temperature
and fission rate). While limited to a local analysis, Nyx provides the advantages of (i) a
high computational efficiency (typically, a fraction of a second per calculation) and (ii)
decoupling of the model of interest from the other aspects of fuel performance analysis.
These characteristics facilitate and accelerate progress on model testing, sensitivity analysis,
uncertainty quantification and validation. Models implemented in Nyx can be transferred
to Bison once the development and testing phase is complete. This also provides additional
confidence in the Bison application following prior consolidation of the models in the simpler
Nyx framework.

Nyx incorporates an engineering model of intra-granular fission gas behavior previously
developed in the NE-SciDAC project. The characteristics of the engineering model that are
most relevant to the work presented here are briefly summarized below. More details are
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given in previous NE-SciDAC milestone reports [35, 36] and in [26]. The model consists of
the following system of coupled partial differential equations:

∂N

∂t
= ν − bN

∂m

∂t
= 2ν − bm+ gc

∂c

∂t
= yF +D∆2c− 2v + bm− gc,

(2)

where N (m−3) is the number density of fission gas bubbles, m (m−3) the concentration of
gas atoms in bubbles, c (m−3) the concentration of gas atoms in solid solution, ν (m−3s−1)
the bubble nucleation rate, b (s−1) the re-solution rate from bubbles, g (s−1) the gas atom
trapping rate at bubbles, y (/) the yield of fission gas atoms, F (m−3s−1) the fission rate
and D (m2s−1) the gas atom diffusivity. D corresponds to the quantity calculated by
Centipede. The average bubble radius is calculated as

R =

(
3Ω

4πn

)1/3

, (3)

where Ω (m3) is the atomic volume and n (-) the number of atoms per bubble. In this
work, we use y = 0.3 and Ω = 4.09 × 10−29 m3, i.e., equal to the volume of the Schottky
defect [37].

The object-oriented structure of Nyx makes it straightforward to extend the program to
increasingly complex models and/or further physical phenomena.

3 Centipede uncertainty quantification and calibration

3.1 Calibration setup

We start with a high-level description of the calibration setup. Our goal is to calibrate a
statistical model that approximates a set of physical quantities ga, a ∈ A, at a particular
operating condition x. In the context of Centipede, the physical quantities ga are the
diffusivities, in particular U diffusivity under thermal equilibrium conditions (Deq

U ), Xe
diffusivity under thermal equilibrium conditions (Deq

Xe) and Xe diffusion under irradiation
conditions (Dirr

Xe). The operating condition x is the temperature.

For each of the diffusivities, there is a corresponding data set

Da := {x(n)a , y(n)a , s(n)a }Na
n=1,

which consists of Na measurements y(n)a that corresponds to the value of ga(x
(n)
a ), i.e., the

value of the physical quantity ga at operating condition x(n)a . For each nth measurement,
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physical quantity symbol data set # reference

U diffusivity under thermal equilibrium Deq
U Sabioni 10 [1]

Xe diffusivity under thermal equilibrium Deq
Xe Davies & Long 10 [2]

Xe diffusion under irradiation Dirr
Xe Turnbull 16 [3, 4]

Table 1: Physical quantities (diffusivities) with their abbreviation, and corresponding data
set and number of measurements (#) in each data set used in the calibration setup.

we also have a post-processed value s(n)a for the measurement error associated with the
measurement y(n)a . See Table 1 and Figure 3 for an overview of the different data sets. We
use D := {Da : a ∈ A} to denote the collection of all data sets.
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Figure 3: Samples of the different Centipede predictions for each diffusivity quantity and
corresponding measurements.

The Centipede diffusivity predictions for a particular set of parameters ν are given as a set
of outputs h(m)

a (ν) at particular operating conditions x(m), m = 1, 2, . . . ,M . We propose
the model

ga(x) = ha(x;ν) + εa (4)

where ν is a set of calibrated parameter values, ha(x;ν) is an interpolating function that
agrees with the Centipede predictions h(m)

a (ν) at the operating conditions x(m) and ε ∼
N (0, σ2a) is a standard normal random variable with mean zero and unknown standard
deviation σa. We consider equation (4) as an augmented probabilistic representation, where
our goal is to calibrate both the model parameters ν and the hyperparameters σa, a ∈ A.
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The goal is now to find the parameters ζ := (ν, σa1 , σa2 , . . .) that best match the statistics
of the model ga(x

(n)
a ), evaluated at the operating conditions x(n)a , to the mean y

(n)
a and

standard deviations s(n)a given in the data Da, for all measurements n = 1, 2, . . . , Na and
for all physical quantities a ∈ A. We will resort to a Bayesian calibration setup to find the
parameters ζ given the available data D. See Figure 4 for an overview of the calibration
framework.

model

model parameters ν
uniform prior p(ν)

noise εa
εa ∼ N (0, σ2a)

operating condition x
temperature

physical quantity a
diffusivity

prediction ga(x)

measurements Da

{x(n), y(n), s(n)}Na
n=1

calibrate
ν, σa

Figure 4: Schematic overview of the calibration problem.

In a Bayesian calibration setting, we require the posterior distribution p(ζ|D), i.e., the
distribution of the parameters given the data. The relationship between posterior p(ζ|D)
and prior p(ζ) is given by Bayes’ law, i.e.,

p(ζ|D) ∝ L(ζ)p(ζ), (5)

where L(ζ) is the likelihood function for observing the data given the parameters ζ.

The calibration problem, as outlined above, where the goal is to match statistics of the
model and the data, is particularly suited to be solved by approximate Bayesian computation
(ABC). In particular, we propose the ABC likelihood

L(ζ) ≈ LABC(ζ) :=
1√
2πδ

∏
a∈A

Na∏
n=1

exp

(
−(ha(x(n);ν)− y(n)a )2 + (ησa − s(n)a )2

2δ2

)
, (6)

where δ is a tolerance parameter. The likelihood function in (6) employs a Gaussian kernel
whose argument is composed of the difference in mean and standard deviation of the model
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and the data. In effect, the first term inside the exponential in equation (6) matches the
mean of the model to the measurement y(n)a , while the second term matches the standard
deviation of the model to the measurement error s(n)a . In the latter term, η is a scaling
factor for the standard deviation to allow for different interpretations of the measurement
error (i.e., 1σ, 2σ, . . . ).

It is in general impossible to compute the posterior p(ζ|D) directly using equation (5).
However, it is possible to generate samples from the posterior using Markov Chain Monte
Carlo (MCMC). We resort to the adaptive MCMC implementation in UQTk, a collection
of libraries and tools for the quantification of uncertainty in numerical model predictions,
see [38, 39].

In the MCMC method, the likelihood function will typically be evaluated a large number
of times. Since the expression in (6) contains a call to Centipede, i.e., ha(x(n);ν), the
calibration setup quickly becomes computationally intractable. Therefore, we will replace
the likelihood function LABC by an approximate likelihood function LABC

surrogate that uses a
surrogate model instead of an actual call to Centipede. The surrogate model construction
will be detailed in the next section.

3.2 Global sensitivity analysis and surrogate model construction

The calibration effort as outlined in Section 3.1 requires many Centipedemodel evaluations.
To avoid excessive computational costs, we resort to a set of surrogate models that replace
the expensive Centipede evaluations by a cheaper-to-evaluate alternative. To increase the
accuracy of the surrogate models, we first perform a global sensitivity analysis (GSA) based
on a first-order polynomial chaos expansion (PCE) surrogate model, to identify a subset
of important parameters. Next, a higher-order PCE surrogate model is constructed using
only the subset of important parameters.

A PCE surrogate model f (n)a (ν) for the Centipede prediction ha(x(n)) for physical quantity
a at operating condition x(n) is defined as

f (n)a (ν) :=
K−1∑
k=0

c
(n)
a,kΦk(ξ),

where c(n)a,k , k = 0, 1, . . . ,K is a set of coefficients and Φk(ξ), k = 0, 1, . . . ,K is a set of mul-
tivariate orthogonal polynomials expressed in terms of i.i.d. (Independent and identically
distributed) random variables ξ := (ξ1, ξ2, . . . , ξd). Since we assume a uniform distribution
for the parameters νj , we have that ξj ∼ U [−1, 1] for each j = 1, 2, . . . , d, and the Φk

are multivariate Legendre polynomials, see [40]. Furthermore, we assume that the input
parameters νj can be written as a linear transformation of the random variables ξj for each
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j = 1, 2, . . . , d, i.e.,

νj =
αj + βj

2
+
βj − αj

2
ξj

where αj and βj are the lower and upper bounds for the parameter νj , for each j =
1, 2, . . . , d.

We initially rely on a first-order PCE model, that is,

f (n)a (ν) =
d∑

k=0

c
(n)
a,kφk(ξk), (7)

where φk, k = 0, 1, . . . d, are univariate Legendre polynomials. The coefficients c(n)a,k can be
found by solving a regression problem using a set of input-output measurements. Given
a PCE expansion as written in equation (7), it is easy to extract sensitivity indices. For
example, the main-effect Sobol’ indices s(n)j can be computed as

s
(n)
j :=

(c
(n)
a,j )2〈φ2k〉∑d

k=1(c
(n)
a,k)2〈φ2k〉

.

The main effect indices s
(n)
j allow for a natural way to order the parameters νj , j =

1, 2, . . . , d, according to their importance.

We start by constructing a total of 3 (number of physical quantities in A) × 26 (number
of operating conditions M) first-order PCE surrogate models for the diffusivity predic-
tions ga(x), a ∈ A at each temperature x(m), m = 1, 2, . . . ,M . The coefficients in the
PCE expansion are determined by solving a least-squares regression problem with 10,000
Centipede runs.

For each surrogate model, we compute the main-effect Sobol’ indices s(n)j , j = 1, 2, . . . , d, see
Figure 5. Next, we select the top 5 most important parameters for each diffusivity quantity.
This results in a set of 9 important parameters (some of them are common between the
sets), see Table 2.

Finally, we construct a set of third-order accurate PCE surrogate models using this subset
of 9 important parameters. The third-order construction was determined to be a good
trade-off between accuracy and overfitting. See Figure 6 for a visual comparison of the
accuracy of the first-order 183-dimensional and third-order 9-dimensional PCE surrogate
models.

The use of these surrogate model effectively lowers the computational burden of the cal-
ibration setup in the next section. One single evaluation of Centipede, computing the
diffusivities for all 26 temperatures x(m), takes roughly 10 minutes, while evaluating the
polynomial surrogate model is almost instantly (in the order of milliseconds on our current
hardware).
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Figure 5: Evolution of the main-effect sensitivity indices for all 183 parameters as a function
of temperature for all three diffusivities. The top 5 most important parameters for each
diffusivity quantity are joined to form the reduced set of parameters. Q parameters refer
to activation energies for diffusion, w parameters to attempt frequencies, S parameters to
defect formation or binding entropies, T0 to the temperature at which UO2 is perfectly
stoichiometric at given chemical conditions and Hf_pO2 to the temperature dependence of
the O partial pressure. The subscripts denote the number of U and O point defects that
make up each cluster. See Refs. [18] and [15] for further explanations.
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Figure 6: Comparison of Centipede output and polynomial surrogate output for all three
diffusivities (top row : 183-parameter case, bottom row : 9-parameter case). The black
dashed line indicates an identity relation. Because the regression problem that needs to be
solved in order to compute the polynomial chaos coefficients is much harder to solve in 183
dimensions, the resulting surrogate predictions are less accurate for the 183-parameter case
(top row).

19



3.3 Bayesian calibration of Centipede

With the surrogate models from Section 3.2 available, the call to Centipede, i.e., ha(x(n);ν)

in (6), is replaced by a call to the third-order PCE surrogate model f (n)a (ν), which results
in the final likelihood

LABC(ζ) ≈ LABC
surrogate(ζ) :=

1√
2πδ

∏
a∈A

Na∏
n=1

exp

(
−(f

(n)
a (ν)− y(n)a )2 + (ησa − s(n)a )2

2δ2

)
.

Next, we use MCMC to get samples from the desired posterior p(ζ|D), see Section 3.1. To
find good starting values for the Markov chain, we prepend the MCMC sampling with a
few iterations of L-BFGS. Furthermore, to ensure that σa ≥ 0 for all a ∈ A (σa can be
interpreted as a standard deviation and should be non-negative), we infer µa := log(σa)
instead for each a ∈ A. Finally, we use a tolerance δ = 0.1, a proposal jump size of 0.25,
set η = 1 and perform 100,000 MCMC iterations.

The reduced set of parameters identified during the GSA study in Section 3.2 contains two
parameters, T0 and Hf_pO2, that correspond to experimental or operating conditions that
may in principle be different for each data set. Thus, we consider two different cases:

• a “single” case where we infer a single value of T0 and Hf_pO2 irrespective of the data
set, and

• a “multiple” case where we infer multiple values of T0 and Hf_pO2, one for each data
set.

The latter case is implemented by extending the set of parameters to calibrate with addi-
tional parameters that are data-set specific (T0, Hf_pO2) pairs, in the sense that the first
data set will only impact the first (T0, Hf_pO2) pair, the second data set will only impact
the second (T0, Hf_pO2) pair and similar for the third data set. See Table 2 for an overview
of these parameters.

In Figure 7, we compare the 5%, 10%, . . . , 95% quantiles of the push-forward prior, i.e.,
the predictions of the diffusivities assuming the prior parameter ranges, and the posterior
predictive, i.e., the predictions of the diffusivities assuming the posterior parameter distri-
butions in the model from equation (4), for both the “single” and the “multiple” case. In
Figure 8, we compare the diffusivities predicted using the maximum a posteriori (MAP)
parameters, i.e., the most likely parameters, for both the surrogate model and Centipede.
The surrogate prediction and the Centipede prediction are in reasonable agreement. Also
shown on the figure is the Centipede prediction using the nominal, uncalibrated parame-
ter values. We note in particular the discrepancy between the “single” and the “multiple”
case for Xe diffusivity under thermal equilibrium conditions. The latter features a different
mechanism at work at high temperatures, which is caused by more reducing conditions as
determined by the much lower T0 value for this case.
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parameter name lower bound upper bound nominal value calibrated value
“single” “multiple”

S_U01_O02 −129370.08 −129367.58 −129368.83 −129369.97 −129369.72
S_vU00_vO01 −129287.92 −129285.42 −129286.67 −129287.88 −129287.87
Q_vU01_vO00 3.98 4.48 4.23 4.09 4.00
Q_Xe_vU02_vO01 3.45 3.95 3.70 3.70 3.68
Q_Xe_vU04_vO03 2.52 3.02 2.77 2.52 2.54
Q_Xe_vU08_vO09 2.88 3.38 3.13 2.89 2.89
w_Xe_vU02_vO01 1.62 32.50 3.25 1.70 1.72
T0 (U diffusion) 1773.00 2173.00 1973.00 2157.46 2166.53
Hf_pO2 (U diffusion) 3.85 6.35 5.10 5.56 5.99
T0 (Xe diffusion) 1773.00 2173.00 1973.00 2157.46 1809.43
Hf_pO2 (Xe diffusion) 3.85 6.35 5.10 5.56 4.21
T0 (Xe irradiation) 1773.00 2173.00 1973.00 2157.46 1777.46
Hf_pO2 (Xe irradiation) 3.85 6.35 5.10 5.56 5.09

Table 2: Lower bound, upper bound, nominal value (from original uncalibrated parameter
set), calibrated value for the “single” case and calibrated value for the “multiple” case for
the set of important parameters in Centipede. The last 6 rows correspond to 3 (number of
data sets) × 2 (number of operating conditions) copies of T0 and Hf_pO2 that we calibrate
only in the “multiple” case. For the “single” case, the last 4 rows are just duplicates of rows
8 and 9. See 5 for explanation of parameter labels.
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Fig. 9 plots the Centipede output for Xe diffusivity under irradiation conditions (both
“single” and “multiple” cases), the Davies & Long data set for Xe diffusivity under thermal
equilibrium conditions, the Turnbull data set for Xe under irradiation conditions, as well as
the Turnbull correlation from [3]. Note that the athermal D3 term contributing to diffusion
below about 1200 K is not included in this plot. The two calibrated curves and the Turnbull
correlation agree well between each other below 2000 K and also with the experimental data
due to Turnbull used for the model calibration. The Centipede predictions also agree very
well with the extrapolation of the Davies & Long data to high temperatures, which is a
positive outcome since those diffusivities have been shown to work well in a number of
macro-scale fuel performance assessments. In fact, this is an interesting observation for
the case with multiple T0 and Hf_pO2 values, since the irradiation case values for these
parameters, which were used in Fig. 9, are noticeably different from those obtained from
the Davies & Long data (see Table 2). The good agreement with the extrapolated Davies &
Long data for the irradiation case parameter set is obtained due to Xe interstitials emerging
as the dominant diffusion mechanism above 1800 K. The emergence of the Xe interstitial
mechanism for the multiple T0 and Hf_pO2 parameter set is a consequence of the conditions
being more reducing, which in turn is a result of the much lower T0 value obtained for
this case. In the case of single T0 and Hf_pO2 values, the vacancy mechanism remains
dominant at high temperature. Additional work is still needed to analyze the calibrated
values for the different cases and to determine which set is the most appropriate, which
will include extending the Davies & Long correlation to higher temperatures as well as
assessing Centipede predictions against thermodynamic data on UO2 non-stoichiometry.
Even though the different correlations agree well in much of the temperature range, the
differences at high temperature could impact simulations for certain accident scenarios.
Differences would also emerge if the prevalent chemistry conditions of the fuel changed as
a consequence of, for example, doping [28].

4 Uncertainty propagation in Nyx

Having calibrated the Centipede model parameters to experimental data using the sensi-
tivity analysis and surrogate machinery described previously, it is straightforward to make
predictions of Xe diffusivity with uncertainty by sampling the posterior parameter distri-
bution and pushing these samples through the data model using the surrogates. For the
remainder of this section, we use the calibrated diffusivities from the “multiple” case from
Section 3.3. The Xe diffusivities can also be easily evaluated at arbitrary temperatures
through interpolation between the temperatures at which the individual surrogates were
constructed, such as in Fig. 7 where the surrogates were constructed to span a temperature
range corresponding to three different experiments. We are interested in propagating the
uncertainty in the Xe diffusivity in particular through higher-level models relevant to the
prediction of intra-granular fission bubble formation. We employ the Nyx code to make
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Figure 7: 5%, 10%, . . . , 95% uncertainty quantiles of push-forward prior (top row), posterior
predictive with a single value of T0 and Hf_pO2 (middle row), posterior predictive with
multiple values of T0 and Hf_pO2, one for each data set (bottom row).
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Figure 9: Centipede output for Xe diffusivity under irradiation conditions (both “single”
and “multiple” cases), the Davies & Long data set for Xe diffusivity under thermal equilib-
rium conditions, the Turnbull data set for Xe under irradiation conditions, as well as the
Turnbull correlation from [3].
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predictions of quantities associated with bubble formation at conditions specified by the
experiments of Baker [5], in order to compare to available experimental bubble data from
White & Tucker [41].

Using 5000 samples of the uncertain diffusivities, Nyx simulations were performed to predict
the bubble number density, atoms per bubble, and bubble radius at temperatures of 1573,
1673, and 1773 K respectively (see Figures 10 to 12). A general trend in the predictions
is the decrease in uncertainty in the quantities with increasing temperature, and improved
agreement of the mean predictions and those using the nominal inputs from the Turnbull
correlation. This improved agreement can be attributed to the agreement between the
Turnbull correlation and the diffusivity samples at higher temperatures (Figure 13).

When comparing to the available experimental data in the case of bubble number density
(Figure 10), the Nyx predictions are consistently lower than the experimental data, even
when taking into account the uncertainty in diffusivity. For predictions of bubble radius
the predictions are consistently higher (Figure 12), and the experimental data points lie
close to the lower bound of the 95% interval. Nevertheless, it is apparent that uncertainty
in Xe diffusivity alone is not able to explain the discrepancy between the data and model
predictions. As such it is important to consider additional sources of uncertainty that
affect the simulation predictions. Figure 14 shows Nyx predictions at 1573 K of the three
quantities of interest where uncertainty in the intra-granular resolution rate has also been
accounted for in the simulations. A scaling factor of 1/

√
10 is assigned to the nominal

resolution rate (i.e. allowing the resolution rate to vary by a factor of 10 from its lower
to upper bound). With this added source of uncertainty the experimental data is now
enveloped by the Nyx predictions, where the variation in resolution rate has a strong effect
on the predicted bubble number density in particular.

5 Xolotl-MARMOT simulations using uncertainty quantified and
calibrated Xe diffusivity

Two dimensional, coupled Xolotl and MARMOT simulations have been performed to assess the
impact of the UQ-based calibrated Xe diffusivity presented in this report, using either the
one or multiple Hf_pO2 and T0 parameter sets. Note that for each simulation or experiment,
there is only one set of Hf_pO2 and T0 values, but for the multiple case those values were
derived by allowing each experiment to have a unique set. The coupled cluster dynamics and
phase field simulations were performed at a temperature of 1400 and 1800 K, respectively,
and included Xe clustering and bubble formation within grain interiors and fission fragment
induced partial resolution of the fission gas bubbles with a size dependence as framed by
Setyawan and co-workers [19]. The 2D simulations had a spatial domain of 20 µm by 20
µm, and included 5 grains with an initial 14 grain boundary bubbles. The spatial mesh was
125 by 125, and 3 different simulations were performed at each temperature, in order to
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Figure 10: Time-evolving number density of bulk bubbles at (a) 1573 K, (b) 1673 K, and
(c) 1773 K. The solid red lines indicate Nyx solutions using nominal diffusivity values from
the correlation of Turnbull [3], i.e. without uncertainty. The solid blue line is the mean
prediction when propagating the uncertain diffusivity following Bayesian calibration, with
the dashed lines indicating the envelope of the 95% interval of the predictions. The green
circle at 2.0×107 s is experimental data [41].
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Figure 11: Time-evolving atoms per bulk bubble at (a) 1573 K, (b) 1673 K, and (c) 1773
K. The solid red lines indicate Nyx solutions using nominal diffusivity values from the cor-
relation of Turnbull [3], i.e. without uncertainty. The solid blue line is the mean prediction
when propagating the uncertain diffusivity following Bayesian calibration, with the dashed
lines indicating the envelope of the 95% interval of the predictions.

compare the differences with Xe diffusion coefficient between the Turnbull expression [3],
as well as the one and multiple parameter Hf_pO2 and T0 fits from the UQ assessment and
calibration. The Xe diffusivity values used in these simulations are provided in Table 3.
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Figure 12: Time-evolving bubble radius at (a) 1573 K, (b) 1673 K, and (c) 1773 K. The
solid red lines indicate Nyx solutions using nominal diffusivity values from the correlation
of Turnbull [3], i.e. without uncertainty. The solid blue line is the mean prediction when
propagating the uncertain diffusivity following Bayesian calibration, with the dashed lines
indicating the envelope of the 95% interval of the predictions. The green circle at 2.0×107 s
is experimental data from [41].
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Figure 13: Diffusivity samples from the calibrated model compared to the correlation of
Turnbull [3] across temperatures

Fig. 15 plots the results of these simulations, in which the Xe monomer concentration within
the grains is plotted in Fig. 15a (1400 K) and Fig. 15c (1800 K), and the inter-granular
fission gas bubble volume fraction (porosity) is plotted in Fig. 15b (1400 K) and Fig. 15d
(1800 K). As expected, the higher irradiation temperature results in lower intra-granular Xe
concentration and more Xe transport to the grain boundary bubbles, resulting in slightly
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Figure 14: Time-evolving number density of bulk bubbles (a), time-evolving atoms per bulk
bubble (b) and time-evolving bubble radius (c) at 1573 K, with additional uncertainty in
the intra-granular resolution rate. The solid red lines indicate Nyx solutions using nom-
inal diffusivity values from the correlation of Turnbull [3], i.e. without uncertainty. The
solid blue line is the mean prediction when propagating the uncertain diffusivity following
Bayesian calibration, with the dashed lines indicating the envelope of the 95% interval of
the predictions. The green circle at 2.0×107 s is experimental data [41].

Turnbull [3] Single Hf_pO2 and T0 Multiple Hf_pO2 and T0
1400 K 0.091 0.103 0.183
1800 K 3.04 5.21 3.14

Table 3: Temperature and Xe diffusivity (in nm2s−1) used in 2D, coupled Xolotl and
Marmot simulations. Single and Multiple Hf_pO2 and T0 refer to the one vs multiple
Hf_pO2 and T0 parameter sets.

larger porosity relative to the lower temperature of 1400 K. Notably, the modification of the
Xe diffusivity does not change the qualitative evolution of the monomer Xe concentration
nor the predicted porosity, although there are some relatively minor quantitative differences.
As shown in Table 3 and Fig. 15, the single parameter calibrated Xe diffusivity agrees
better with that predicted by Turnbull [3] at 1400 K, whereas the multi parameter (multi)
calibrated diffusivity agrees better with the Turnbull prediction at 1800 K. Future effort
will further analyze the impact of the newly calibrated Xe diffusion models against a variety
of experimental data.

In addition, the diffusion values from Turnbull and those from the calibrated Centipede
simulation results were compared in a stand-alone phase-field model of fission gas release
using the MARMOT code [27] (no coupling to Xolotl). In the simulation, fission gas was
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a)

c) d)

b)

Figure 15: Predicted Xe monomer concentration {a) and c)} and inter-granular bubble
volume fraction (porosity) {b) and d)} from 2D coupled Xolotl-MARMOT modeling at 1400
{a) and b)} versus 1800 K {c) and d)}.
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produced within a 30 µm×30 µm 2D polycrystal of UO2. It had 36 initial grains, with
an average grain size of 5 µm, and 20 initial intergranular fission gas bubbles, as shown in
Fig. 16a. The left side of the domain was a free surface, such that gas that reached it was
released. The fission gas behavior was simulated over 260 days at 1200 K with a fission rate
of 1.09×1013 fissions/(cm3s). As can be seen in Fig. 16b, the simulations using the Turnbull
and Centipede diffusion coefficients resulted in nearly identical amounts of gas released over
time, which is no surprise given the similarity of the two diffusion coefficients at 1200 K.
Future work will explore cases where the models are expected to perform differently, as
previously discussed.

a) b)

Figure 16: Comparison of the fission gas release predicted by MARMOT using the Turnbull
and Centipede diffusion coefficients. (a) Initial microstructure used in the fission gas phase
field simulations, where the left side is a free surface; (b) Plot of the gas release rate from
the left side of the domain predicted using the two diffusion coefficient values.

6 Conclusions

The Centipede code predicts the diffusion rate of fission gas atoms (Xe) in irradiated UO2

nuclear fuel by solving a set of rate equations describing the response of point defects, de-
fect clusters as well as their interaction with Xe to irradiation. The model contains 183
parameters that were previously determined from atomic-scale simulations. The Xe diffu-
sivities predicted by the model were in reasonable agreement with experiments, however,
given the complexity of the model, uncertainties may be significant and consistency with
experimental data may not be complete. In the present study, a statistical model based
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on Centipede was calibrated that predicts both the value of the Xe diffusivity in good
agreement with available data and the uncertainty associated with the prediction. The
model parameters were refined using Bayesian calibration with a dedicated approximate
Bayesian computation (ABC) likelihood function. To avoid excessive computational costs,
the expensive Centipede simulation code was replaced by a higher-order surrogate model,
constructed using only the 9 most important parameters. These important parameters were
identified by a preliminary global sensitivity analysis (GSA) study. Two different strategies
were employed in the calibration. The first considers the chemistry in all experiments to be
the same regardless of the conditions and the second instead ascribes unique chemistry to
each experimental measurement, which is considered to be the more accurate representa-
tion of the experimental conditions. The chemistry controls the O non-stoichiometry, which
impacts the concentration of point defects, defect clusters and consequently diffusion. Both
calibration sets achieve good agreement with experimental data, but nevertheless show dis-
tinct features related to the defect chemistry at high temperature. Those will be further
investigated in future work.

Finally, the diffusivity predictions by Centipede are used as input to to engineering scale
simulations using the Nyx code (reduced order fuel performance code focused on gas behavior
alone) and meso-scale simulations of the intra- and inter-granular fission bubble evolution
using the coupled Xolotl-MARMOT code. The Nyx simulations included uncertainty propaga-
tion and the results were used to estimate quantities associated with inter-granular bubble
formation at conditions specified by the experiments of [5]. The uncertainty of the Xe dif-
fusion coefficient was not sufficient to bound all the experimental data, but adding uncer-
tainties for the intra-granular bubble resolution rate results in the experimental data points
being bound by the envelope of the 95% interval of the predictions. The Xolotl-MARMOT
simulations were compared to simulations using the baseline diffusivities from Turnbull et
al. [3]. Overall, since the calibrated Centipede prediction of diffusivities are close to the
Turnbull model, the Xolotl-MARMOT simulations based on the two models are similar. How-
ever, since the Turnbull model does not incorporate any sensitivity to chemistry, it will
always predict the same gas evolution regardless of fuel composition, while the mechanistic
Centipede model is able to capture those changes and, moreover, the calibrated predictions
will contribute to capturing those changes with higher accuracy as compared to the nominal
parameter values.

Future work will add thermodynamic data on UO2±x non-stoichiometry to the data set
used for parameter calibration.
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